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ABSTRACT 
Detection of tensor perturbations predicted in inflationary models provides 
an important test of inflation ss well as crucial data for reconstructing the 
inflationary potential. We show that T/S must be greater than 0.2 for a 
statistically significant detection of tensor perturbations-even with perfect 
knowledge of the CBR sky temperature (T,S are respectively the tensor 
and scalar contribution to the variance of the CBR quadrupole anisotropy). 
This sensitivity can be achieved by full-sky measurements at the 3” and 0.5” 
angular scales. 
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Inflation is a very attractive early-Universe paradigm, and has had almost 
as much impact on cosmology as the big-bang model itself. Inflation provides 
not only an explanation for the flatness and smoothness of the observed 
Universe, but also for the inhomogeneity needed to seed all the structure 
seen today. However, inflation has yet to be tested in a significant way. 

The key to testing inflation are its three robust predictions: spatially-flat 
Universe (QJ = 1) and nearly scale-invariant spectra of scalar (density) [E] 
and tensor (gravity-wave) [2] metric perturbations. With regard to the first, 
there is some evidence that the density parameter alto is close to unity 131, and 
several large-scale experiments are underway to setich for the nonbaryonic 
dark matter that must be present if Ro = 1. Scalar perturbations seed the 
formation of structure, and hence, a large body of observational data concern- 
ing the distribution of matter in the Universe today can provide information 
about them. Today, tensor perturbations correspond to a stochastic back- 
ground of gravitational waves that could possibly be detected by space-based 
gravity-wave detectors. Both tensor and scalar metric perturbations give rise 
to anisotropy in the temperature of the Cosmic Background Radiation (CBR) 
on angular scales from arcminutes to 180’ (see Fig. l), and CBR-anisotropy 
experiments are a promising means of testing these predictions of inflation. 

Long before inflation the attractiveness of scale-invariant perturbations 
and a flat Universe had been emphasized [4]; for this reason tensor per- 
turbations play a crucial role in discriminating between inflation and other 
“attractive” theories. In addition, detection of the tensor perturbations is 
vital to the reconstruction of the inflationary potential [5). Denoting the 
spectral indices of the scalar- and tensor-metric perturbations by n and nT 
respectively (scale invariance corresponds to n - 1 = ?zT = 0), and their 
contributions to&he variancePf-thaqla&u~le.CBRaaisotraW-bySand~T, 
the value of the inflationary potential and its first two derivatives are given 
by PI 

v50/~P14 = 1.65(1 - I.4nT)T, 

v$/mm2 = 21 [(n - 1) + 0.4rj T 

where T E 5. These expressions are accurate to lowest order in the deviation 
from scale invariance, i.e., to order 7~ - I, ?&T, and subscript ‘50’ indicates 



the value of the scalar field when present horizon-sized ff uctuations crossed 
outside the horizon during inflation. In addition, there is an important con- 
sistency relation: nT = -$r, which is an important test of inflation. 

In the foreseeable future CBR-anisotropy measurements offer the best 
promise to reveal the presence of tensor perturbations. Because inflationary 
predictions for the metric perturbations are statistical in nature and the sky 
is but a finite sample of the Universe, sampling variance, or cosmic variance 
as it has become known, provides a fundamental limit to the separation of the 
tensor and scalar contribution to CBR anisotropy. In this Letterwe show that 
sampling variance precludes the detection of tensor perturbations if r s 0.2, 
and further, we show how a simple experiment involving measurements of 
CBR anisotropy on angular scales of around 3’ and 0.5” can achieve this 
limiting sensitivity. 

In the near term our ignorance of important cosmological parameters, 
the Hubble constant, Ho E 1OOh kms-’ Mpc”, and the baryon fraction, 
s2~, as well as the ionization history of the Universe limit even further the 
sensitivity, as has been strongly emphasized in Ref. [S]. Since we believe 
that the prospects for determining these parameters by other means is good, 
we shall take the optimistic view that they are “known.” For definiteness, 
we assume h = 0.5, sty = 0.05, and the standard ionization history (i.e., 
any injection of energy in the post-recombination Universe is not significant 
enough to affect the location of the lastTscattering surface). In addition, we 
shall, for the moment, assume that n is known and equal to unity. 

We begin by briefly reviewing the statistics of CBR anisotropy in general 
[9], and that produced by inflation in particular. CBR-temperature fluctua- 
tions are expanded in spherical harmonics, 

-m(& 4 = c QrnKm(@, f#). @ I 
1.m 

Isotropy in the mean guarantees that (a~,,&,,,,) = C$&,,,,I, where brackets 
indicate an ensemble .average and Cl E (~cJ~~~~} is called the angular-power 
spectrum. (The variance of the quadrupole anisotropy is defined to be Q2 E 
5Cz/&r.) Provided that the underlying perturbations are’ Gaussian (as is 
almost certainly the case for inflation), all predictions can be derived from 
the angular-power spectrum. With access to only one sky, however, for each 
multipole moment we can only measure 2f+ 1 independent multipoles, and 
thus, we can only estimate Cl, Crtimak = C;ky f Cm l~l,,,1~/(22 + 1). The 
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variance due to this finite sampling is 

((GkY - cl)‘) = 2 c? 
no. of samples = I + l/2’ (3) 

This ultimate uncertainty in our knowledge of the angular-power spectrum 
is the key to our limit to T. 

Most experiments do not directly measure the angular-power spectrum, 
but instead, the variance of temperature fluctuation on a given angular scale. 
The predicted variance is 

(6T2) = c 
1 

The window function Wl depends on the beam size and chopping strategy. 
Very roughly, an experiment that measures the temperature difference be- 
tween directions separated by angle 8 has a window function that is centered 
around 2 N 180”/8, with width of order 2. If the experiment samples the full 
sky, then the variance of (6p)&y is 

((@T2hk; - (ST2))*) = 2F $;q2, (5) 

where the brackets with subscript “sky” distinguish sky average from ensem- 
ble average. 

Figure 1 shows the angular-power spectra arising from scale-invariant 
scalar and tensor perturbations [lo]. CBR anisotropy experiments estimate 
the sum of the scalar and tensor contributions, Cl = Cr + CT, and our 
problem is to. separateAhetwocontribu$icms. &ikesvise,~2 = .S-+ T, where 
S = 5C,s/4n and T = 5c/47r.) Differences in the metric between two 
points on the last-scattering surface (Sachs-Wolfe effect) are the dominant 
contribution to both angular-power spectra at large angles (I 5 60). Tensor 
perturbations decrease in amplitude once their wavelengths become smaller 
than the Hubble radius which explains why the tensor spectrum drops at 
small angles (I 2 60). The scalar angular-power spectrum increases slowly 
with I due to the pre-recombination oscillationsof the baryon-electron-photon 
fluid, giving rise to the “Doppler peak” at I w 200 [ll]. 

Our strategy for separating Cf and q is to measure the variance in 
temperature fluctuations at two angular scales. The window function for 
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one experiment, IVjs, is centered at small angles (2 w 200) where CT is 
insignificant. The window function for the other experiment, WIA, is centered 
at intermediate angles (I w 50). In essence, experiment B measures the 
amplitude of the scalar spectrum, and experiment A measures “excess power” 
at large angles due to tensor perturbations. We define a measure of this excess 
power, 

(6) 
where (6Y$r=~ = Cl 4r mC,“WiA is the variance expected in experiment A 
for T = 0 and (6z)&,. is the variance actually observed by experiment A. 
Note that 2 is proportional to T. 

Because of cosmic variance a measurement of 2 # 0 does not necessarily 
imply t # 0. Consider the cosmic variance in 2: 

2 ct[@  + l)(c,T(r) + c,s)2@ ‘i?21 AZ2 _ ((2 - (z))2) 
(a2 - (2)2 = E&2~ + wmwAl>2 * (7) 

We have not included the cosmic variance from experiment B because it is 
negligible. The ratio Z/AZ, which is proportional to T, is a measure of 
signal-to-noise. We choose WIA to be the window function that maximizes 
Z/AZ, and thereby sensitivity to r. The optimal window function is shown 
in Fig. 1. Its shape can be understood as a signal-to-noise weighting. For 
small I there is large noise (cosmic variance); for large Z there is small signal 
(CT/C,” is small). The “signal-to-noise” peaks at Z N 50. 

We have numerically calculated the probability distribution P(Z(r) using 
a Monte-Carlo method; see Fig. 2. For T = 0.3 it is clearly possible to rule 
out the hypothesi&hat-.r-==. &s incei~probabili.@dist&ntion .hss little 
overlap with that for r = 0.3. 

To address the overlap of distributions quantitatively, statisticians define 
‘Size” and “power”. The power is the probability, of measuring 2 < 21 
given r = 0, and the size is the probability of measuring 2 < Zi given 
T = ?-I. Figure 3 illustrates the likelihood for ruling out r = 0 with 95 per 
cent confidence, given that the actual value T # 0. In other words, we have 
fixed the power to be 0.95, and calculated the size as a function of r. As 
f increases, P(Z[ r overlaps less with the distribution for r = 0, and thus ) 
the size decreases. For T N 0.2 there is a 95 per cent chance that one can 
exclude the T = 0 hypothesis with at least 95 per cent confidence. For the 
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cosmologist who feels lucky, we point out that for T as small as 0.1 there is 
a 50 per cent chance of being able to eliminate the r = 0 hypothesis with at 
least 95 per cent confidence. 

While we have chosen WrA to maximize Z/AZ, the breadth of this maxi- 
mum (in window-function space) is large so that even substantial changes in 
WIA do not greatly affect Z/AZ. Nor does the optimal window function have 
a special shape; in fact, it is very similar to the window function for SP91[13]. 
However, one might ask if a more cleverly defined observable could achieve a 
greater sensitivity. To the contrary, we now show that the sensitivity of the 
two-band measurement cannot be significantly improved upon. 

To address this issue we apply a likelihood-ratio test 1121 that uses all 
possible information, i.e., all the multipoles. Likelihood-ratio tests are de- 
signed to discriminate between two hypotheses, HO and HI. Their virtue is 
that they are “most powerful;” that is, for fixed size such a test yields maxi- 
mum power. For our purposes hypothesis HO is the assertion that t = 0, and 
hypothesis HI is the assertion that T = q. 

We define the likelihood ratio, 

= PhJJl~ = 4 =e-"- O" 
x - 

P((mz&- = 0) n( 

c: 
t21+1 I/2 

14 crs + md 1 
, (8) 

A’ = O” cm ranI 1 

c[ ( 
1 

1=2 2 cf + c$yr1) cf )I * 

We then proceed as before: generation of the distributions P(# = 0) and 
PW = rr), followed by calculation of size for a given power. The results are 
shown in Fig. 3 and are nearly identical to those of the previous “Z-test.” 

Depending on th&alyalues..of h-d n,theJimitippsensitivity 
to T can vary by a factor of about two. For example, decreasing n from 1 
to 0.85 improves the sensitivity by almost a factor of two (see Fig. 3) by 
reducing the amplitude of the scalar multipoles for Z > 2. Next, let us briefly 
address the effects of uncertainty in n. As shown in Fig. 2, it is not possible 
to distinguish n = 0.94, r = 0 from n = 1 .O, r = 0.2. Thus, if n is known 
to be between 0.94 and 1, r must be greater than 0.4 to ensure detection of 
tensor perturbations. 

A logical extension of the two-band measurement is the extraction of both 
r and no via a “three-band” measurement. An independent measure of nr 
permits the testing of the consistency relation: r = -7nT. However, even for 
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T as large as 1, SO that nr = -l/7, ruling out nT = 0 is nearly impossible. 
For T s 1, falsification of the consistency relation requires JnrJ >> r/7 [14]. 

Finally, while we have focussed solely upon anisotropy, polarization of 
the anisotropy has been suggested as another way of separating tensor and 
scalar perturbations. At large angles (I s lo), linear polarization of CBR 
anisotropy due to tensor perturbations is about & times greater than 
that due to scalar perturbations [15]. By means of a likelihood-ratio test 
for polarization, we find a limiting sensitivity of r N 0.03. However, as 
the authors of Ref. [IS] point out, the measurement is difficult since the 
polarization-toanisotropy ratio at large angles is less than I per cent for 
T = I-and closer to 0.01% for the limiting sensitivity. Further, polarization 
is much more difficult to measure on large angular scales. For the foreseeable 
future it seems unlikely that polarization experiments can achieve higher 
sensitivity to r. 

In summary,, for the near term CBR anisotropy appears to be the most 
promising means of discovering inflation-produced tensor perturbations. We 
have shown that even with perfect knowledge of the temperature of our CBR 
sky, the ratio of tensor to SC&~ perturbations r must be greater than about 
0.2 to guarantee a statistically significant detection. Of course, even the 
failure to detect gravity waves through CBR anisotropy at this limiting sen- 
sitivity would yield some information; namely, that Vli4 5 2 x 1016GeV. 
The importance of searching for tensor perturbations should provide motiva- 
tion for the next generation of satellite-based CBR anisotropy experiments 
to achieve the sky coverage and precision necessary. 

We thank Scdt ‘Do~mson-fcrr-vitluablecomments and-the use&his scalar 
angular-power spectra. This work was supported in part by the DOE (at 
Chicago and Fermilab) and by the NASA through grant NAGW-2381 (at 
Fermilab). 
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Figure Captions 

Figure 1: Angular-power spectra arising from scalar and tensor metric per- 
turbations for n - 1 = ?%T = 0, h = 0.5, and Rs = 0.05. The dashed curve is 
the optimal window function, W,A, described in the text. 
Figure 2: Probability distribution P(ZJr) for (n, r) = (1, 0), (1, O.l), (1, 
0.2) and (1, 0.3) (solid curves) and for (n, r) = (0.94, 0) (broken curve). 
Figure 3: Size vs. T for the “Z-test” (broken curves) and likelihood-ratio 
test (solid curves); n = 1 (open symbols) and rt = 0.85 (filled symbols). 
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